
Entrusting Your Secrets to an Oblivious PRF

1

Hugo Krawczyk
Algorand Foundation

Future of PI – EuroS&P 2021

Collaborators: Stas Jarecki, Aggelos Kiayas, Jason Resch,

Nitesh Saxena, Maliheh Shirvanian, Jiayu Xu

Imagine a world where

◼ Each human being can remember a 256-bit entropy a secret

◼ You could encrypt other secrets with it. Such as

 A private key you could use to prove yourself to others

 Private credentials, medical and financial information, love letters

 Crypto wallets where you spent all your savings

 Encrypt your cloud data without anyone being able to get to it

 …

◼ Not a panacea, but what a great foundation a strong secret would

be to our digital identity and privacy…

2

Can we trade a memorizable password
for a strong secret, securely?

◼ Till the day we all carry a chip in our brains…

◼ … the closest to secrets we can remember are passwords

◼ So, what are the best ways to trade passwords for strong secrets?

◼ Enter Oblivious Pseudo-Random Functions (OPRF)

3

Oblivious PRF (OPRF)

4

Pseudo-Random Function
(PRF) Fk(x)

x

Fk(x)or $
Fk or $ Adv

?
S(k) U(x)

Fk(x)Nothing

OPRF protocol

FK

❑ OPRF: Protocol b/w a user with input x and server with key k;

user learns Fk(x) and nothing else and server learns nothing

(neither the input or output of the computation)

FK indistinguishable from

random function

[…, FIPR’05,…]

◼ PRF: FK(x) = H(x)k ; H = RO into group of prime order q; key k in Zq

Implementation: DH-OPRF

5

Fk(x) = H’(x, H(x)k)

◼ PRF: FK(x) = H(x)k ; H = RO into group of prime order q; key k in Zq

◼ Oblivious computation via Blind DH Computation (S has k, C has x)

◼ b1/r = (ak)1/r = (((H(x)r)k)1/r = (((H(x)k)r)1/r = (H(x))k

◼ The blinding factor r works as a one-time encryption key:

hides H(x), x and FK(x) perfectly from S (and from any observer)

Implementation: DH-OPRF

6

a = (H(x))r

b = ak

S: key k C: input x

random r

Computes H(x)k
 b1/r

◼ PRF: FK(x) = H(x)k ; input x, key k from 0…q-1

◼ Oblivious computation via Blind DH Computation (S has k, C has x)

◼ Cost: 2 messages, 2 exponentiations for C, 1 for S

 Commodity laptop: > 10,000 exponentiations/second

 Variant: fixed base exponentiation for C (even faster)

DH-OPRF Efficiency

7

a = (H(x))r

b = ak

S: key k C: input x

random r

Computes H(x)k
 b1/r

◼ Server S has an OPRF key k; user U enters its password pwd and

gets a strong secret s = OPRFK(pwd)

◼ No one (including the server) learns anyhing about pwd or s

→ a strong crypto key for anyone that does not know pwd

Trading a Password for a Strong Secret

8

OPRF protocol

k pwd

s=Fk(pwd)Nothing

OPRFK

US

Simple, Intuitive and …

◼ Assume a setting where given a value s’, one can check that s=s’

 E.g., use s’ to decrypt a ciphertext encrypted with the user’s key s

◼ Attacker impersonates S with fake OPRF key k*, creates dictionary

D={FK*(pwd): pwd ∈ PwdDict} and for each s’ in D, it checks if s=s’

◼ Countermeasures (depending on application):

 “Verifiable OPRF“ : can verify the output from the server via a PK

 Server stores user-related state (e.g., OPAQUE, PPSS);

 The application does not allow to verify values for s (e.g., SPHINX)

 Use a threshold OPRF (more later)

9

Insecure

OPRF application to aPAKE

◼ aPAKE: Asymmetric Password Authenticated Key Exchange

◼ Password protocol between a client and server; generates a key to

protect communication between C and S

 Common implementation: Password-over-TLS

◼ aPAKE is a stronger notion: no PKI (except for registration),

no exposure of password outside the client machine (incl. to S)

◼ Only allowed attacks are unavoidable ones

 Online password guessing and offline dict attack upon server compromise

◼ Note: “Strong aPAKE” (offline attack cannot be pre-computed)

10

◼ User U logs to server S with password pwd: Runs OPRF with S to
“exchange” pwd for the OPRF output rwd = OPRFK(pwd)

◼ rwd is a strong key for anyone that does not know pwd (incl. S)

◼ U uses rwd as a private key in a key exchange (KE) protocol with S

OPRF Application to aPAKE

11

[FK’00, Boyen’09,

JKKX’16, JKX’18]
OPRF protocol

k pwd

rwd=Fk(pwd)Nothing

OPRFK

US

OPAQUE

◼ Let KE be a PK-based Authenticated Key Exchange protocol

◼ Registration (of user U at server S):

 S chooses fresh OPRF key k and a pair (privS, pubS) for protocol KE;

 U runs OPRF with S on input pwd to learn rwd=Fk(pwd);

it generates KE keys (privU, pubU) and sets EnvU = AuthEncrwd(privU, pubS)

 S stores (privS, pubU), OPRF key k and EnvU

◼ Login:

 U runs FK(pwd) with S to learn rwd; receives and decrypts EnvU ;

 U and S run KE with keys (privU, pubU, privS, pubS)

12

[JKX’18]

OPRF + AuthEnc + AKE → Strong aPAKE

▪ Idea is simple but subtleties abound

▪ KE must satisfy perfect forward secrecy and security against

“reverse impersonation” (KCI security)

▪ AuthEnc must have a “key committing” property

▪ OPRF needs to be collision resistant and secure against

adversarially-chosen keys

▪ Proven UC (strong) aPAKE in RO: non-trivial (minefield!)

13

OPAQUE compiler

OPAQUE with DH-OPRF

◼ C has 𝑝𝑤𝑑; S has OPRF key k and private key privS ;

S stores EnvU = AuthEncrwd(privU, pubS) where rwd=H’(pwd, H(pwd)k)

 C sends 𝑎 = (𝐻(𝑝𝑤𝑑))𝑟 , 𝑔𝑥 (random 𝑟, 𝑥)

 S replies with 𝑏 = 𝑎𝑘, EnvU , 𝑔
𝑦, AuthKES (𝑔𝑦) (random 𝑦)

 C sets 𝑟𝑤𝑑 = 𝐻′(𝑝𝑤𝑑, 𝑏1/𝑟) , decrypts-verifies EnvU , sends AuthKEC (𝑔𝑥)

◼ AuthKES (𝑔𝑦) , AuthKEC (𝑔𝑥) and a session key are computed by C and S

according to protocol KE and their corresponding private/public keys

◼ Example: With KE=HMQV, the session key computation for both C and S

is little more than one exponentiation (1.17)

◼ OPAQUE well suited for TLS 1.3 (with KE = SIGMA)

14

Summary: OPAQUE Protocol

◼ Modular/flexible: Can compose with any AKE with KCI and PFS

◼ Efficient instantiations (e.g., HMQV, 3DH, SIGMA, TLS 1.3)

◼ Standardization: CFRG and TLS working groups

◼ Security: Strong aPAKE in the UC model (under ROM/Gap-OneMoreDH)

 Only unavoidable attacks: online guessing and exhaustive offline dictionary

attacks upon server compromise (no PKI! , pwd never exposed outside client)

◼ Extensions:

 Credential/secret retrieval

 Multi-server implementation via threshold OPRF (no change on client side)

15

PPSS: Password Protected Secret Sharing

(password-protected distributed storage)

16

How to store a secret

◼ We want to protect secrecy and availability of information while

remembering a single password

 Single server = Single point of compromise for secrecy (offline dict attacks)

 Single server = Single point of failure for availability (server gone, secret gone)

➔Multi-server solution a must.

◼ Crypto solution: keep the secret encrypted in multiple locations;

secret share the encryption key in multiple servers

 Share among n servers, retrieve from t+1 servers (e.g. n=5, t=2)

◼ Protects availability and secrecy: available as long as t+1 available,

secret as long as no more than t corrupted
17

(and not lose it)

Wait, but how do you authenticate to each
server for share retrieval?

◼ Server needs to authenticate the user before delivering a share

◼ All we have is a user and a password

 A strong independent password with each server? Not realistic

 Same (or slight-variant) password for each server? Not good

➔ Each server as a single point of compromise!

 From one point of compromise to n. We haven’t achieved much, have we?

18

How to protect a secret with a password

◼ What we want: “(n,t)-Password-Protected Secret Sharing (PPSS)”

 n servers, t+1 reconstruct the secret, breaking into t servers is useless (even

if all t servers’ memory leaks: shares, long-term keys, password file, etc.)

 Only adversary option: Guess the password, try it in an online attack.

◼ We show a solution based on (n,t)-Threshold OPRF : Instead of

one server storing an OPRF key K,

1. n servers, each stores a share ki of K so that any t+1 can compute the OPRF

2. but no collusion of t malicious servers can learn anything about K or the

input/output of the function on any value

3. K is never reconstructed, shares used to compute OPRF, not to compute K

19

PPSS Solution = Threshold OPRF

◼ n servers share a T-OPRF Fk(x)

◼ U’s secret defined as s=Fk(pwd)

◼ To retrieve s, U runs T-OPRF with any t+1 servers

◼ More precisely (crucial detail):

 U’s secret defined as s’=H1(s)

 In addition to ki , servers store c= H2(s), which they send to U together with

OPRF response; if not t+1 servers send c=H(s,2), U aborts

◼ Security bonus: Even if t+1 servers compromised, a full exhaustive

offline attack still needed to find password!

20

Threshold DH-OPRF (n-out-of-n)

◼ Single server solution: 𝐹𝑘(𝑥) = (𝐻(𝑥))𝑘 (H’ omitted for simplicity)

◼ Multi-server solution: Server 𝑆𝑖 has share 𝑘𝑖, 𝑘 = 𝑘1 + 𝑘2 +⋯+ 𝑘𝑛

 𝐹𝑘(𝑥) = 𝐻 𝑥
𝑘1 ∙ 𝐻 𝑥

𝑘2 ∙ ⋯ ∙ 𝐻 𝑥
𝑘𝑛 = 𝐻 𝑥

σ 𝑘𝑖

◼ To compute 𝐹𝑘 𝑥 obliviously, U sends same 𝑎 = (𝐻(𝑥))𝑟

to each server; 𝑆i returns 𝑏𝑖 = a𝑘𝑖; U sets 𝐹𝑘(𝑥) = (ς𝑏𝑖)1/𝑟

◼ Efficiency: 2 exp’s for client (indep of n), 1 per server, 1 round

◼ Key 𝑘 is never reconstructed: “function sharing” vs “secret sharing”

21

Threshold DH-OPRF (t-out-of-n)

◼ t-out-of-n threshold DH-OPRF: Each server 𝑆𝑖 has share 𝑘𝑖

◼ 𝐹𝑘(𝑥) computed from any set of t servers 𝑆𝑖1,…, 𝑆𝑖𝑡

 𝐹𝑘(𝑥) = (𝐻 𝑥)𝜆𝑖1𝑘𝑖1 ∙ (𝐻 𝑥)𝜆𝑖2𝑘𝑖2 ∙ ⋯ ∙ (𝐻 𝑥)𝜆𝑖𝑡𝑘𝑖𝑡

 𝜆𝑖𝑗 is a Lagrange interpolation coefficient (“Shamir in the exponent”)

◼ As before: key 𝑘 is never reconstructed

 Not even during generation/sharing: Distributed key generation

◼ Note: share recovery and proactive share refreshing

22

PPSS Efficiency (same as Threshold OPRF)

◼ Computation:

 Single exponentiation for each server

 Only two exponentiations in total for the client (independent of t and n)

◼ Communication: Single parallel message from user to t+1 servers,

one msg back from each server. No inter-server communication.

◼ No assumed PKI or secure channels (other than for initialization)

◼ Any t, n (t ≤ n)

◼ Robustness/Verifiability: V-OPRF (e.g via NIZK or interactive verif.)

23

SPHINX: Magic Password Manager

◼ What if we could remember really strong independent

passwords, securely?

◼ We would have solved online and offline dictionary attacks!

◼ But what about breaking the password manager itself?

24

Password Manager

◼ OPAQUE and PPSS do not solve the “entropy problem”

◼ Password manager: Stores passwords for user (browsers, lastpass, etc)

 If it uses random passwords, online and offline attacks are resolved

 A list of all user’s passwords encrypted under a master password

→ Can run offline dictionary attack given the user’s encrypted list

◼ Wanted: Attacker with full control of the manager and storage:

 Learns nothing about stored passwords (even during password registration)

 Even with full control of the manager, a dictionary attack on master

password requires an online attack per guess

25

26

Kd

mpw

a = (H(mpw))r

b = aKd

rwdS = H’(acctS,b1/r)

pake(rwdS)

1

3

5

2

4

• rwd is ~random hence secure against online guessing and offline attacks on server

• mpw and rwdS independent of device storage (Kd): secure upon device compromise
(even in this case, an mpw dictionary attack needs online verification with server)

• master mpw is perfectly hidden on the wire and from device: secure against
network attackers and fully malicious device

r
(onetime)

rwdS = H’(acctS,H(mpw)K)d

State(rwdS)

SPHINX Security

◼ Network attacks: Unconditional security device-client communication

◼ Online dictionary attacks: Infeasible (random and independent rwd’s)

◼ Offline dictionary attacks: Infeasible (random rwd)

 Offline against master pwd ONLY if server AND device compromised

◼ Device compromise: Unconditional secure pwd/rwd (online-only attack)

◼ Password leakage: Partial defense (rwd useless in another server,

master pwd useless w/o device, url hashing prevents phishing)

27

SPHINX: A password Store that Perfectly Hides from Itself, No Xaggeration

Final Remarks

Passwords, can't live with them, can't live without them

◼ If you are one of those that believe passwords are about to

disappear, this work is not for you

 I was in that camp 25 years ago... life taught me I was wrong

 Deployment, convenience, portability , familiarity, inertia, …

◼ Hardware-based solutions need to be pursued, but password

security cannot be disregarded, it still fuels most of our security

◼ Goal: Password visibility at client machine as the only vulnerability

 OPAQUE with T-OPRF addresses offline attacks upon server compromise

 OPAQUE (or any aPAKE) with SPHINX manager eliminates online and offline

attacks too (leaves client machine as only attack target!)

28

Thanks!

29

◼ OPAQUE ia.cr/2018/163

◼ OPAQUE Internet draft

https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-opaque

◼ PPSS ia.cr/2017/363

◼ SPHINX ia.cr/2018/695

◼ 2-factor authentication eprint 2018/033 (not presented)

