
Entrusting Your Secrets to an Oblivious PRF

1

Hugo Krawczyk
Algorand Foundation

Future of PI – EuroS&P 2021

Collaborators: Stas Jarecki, Aggelos Kiayas, Jason Resch,

Nitesh Saxena, Maliheh Shirvanian, Jiayu Xu

Imagine a world where

◼ Each human being can remember a 256-bit entropy a secret

◼ You could encrypt other secrets with it. Such as

 A private key you could use to prove yourself to others

 Private credentials, medical and financial information, love letters

 Crypto wallets where you spent all your savings

 Encrypt your cloud data without anyone being able to get to it

 …

◼ Not a panacea, but what a great foundation a strong secret would

be to our digital identity and privacy…

2

Can we trade a memorizable password
for a strong secret, securely?

◼ Till the day we all carry a chip in our brains…

◼ … the closest to secrets we can remember are passwords

◼ So, what are the best ways to trade passwords for strong secrets?

◼ Enter Oblivious Pseudo-Random Functions (OPRF)

3

Oblivious PRF (OPRF)

4

Pseudo-Random Function
(PRF) Fk(x)

x

Fk(x)or $
Fk or $ Adv

?
S(k) U(x)

Fk(x)Nothing

OPRF protocol

FK

❑ OPRF: Protocol b/w a user with input x and server with key k;

user learns Fk(x) and nothing else and server learns nothing

(neither the input or output of the computation)

FK indistinguishable from

random function

[…, FIPR’05,…]

◼ PRF: FK(x) = H(x)k ; H = RO into group of prime order q; key k in Zq

Implementation: DH-OPRF

5

Fk(x) = H’(x, H(x)k)

◼ PRF: FK(x) = H(x)k ; H = RO into group of prime order q; key k in Zq

◼ Oblivious computation via Blind DH Computation (S has k, C has x)

◼ b1/r = (ak)1/r = (((H(x)r)k)1/r = (((H(x)k)r)1/r = (H(x))k

◼ The blinding factor r works as a one-time encryption key:

hides H(x), x and FK(x) perfectly from S (and from any observer)

Implementation: DH-OPRF

6

a = (H(x))r

b = ak

S: key k C: input x

random r

Computes H(x)k
 b1/r

◼ PRF: FK(x) = H(x)k ; input x, key k from 0…q-1

◼ Oblivious computation via Blind DH Computation (S has k, C has x)

◼ Cost: 2 messages, 2 exponentiations for C, 1 for S

 Commodity laptop: > 10,000 exponentiations/second

 Variant: fixed base exponentiation for C (even faster)

DH-OPRF Efficiency

7

a = (H(x))r

b = ak

S: key k C: input x

random r

Computes H(x)k
 b1/r

◼ Server S has an OPRF key k; user U enters its password pwd and

gets a strong secret s = OPRFK(pwd)

◼ No one (including the server) learns anyhing about pwd or s

→ a strong crypto key for anyone that does not know pwd

Trading a Password for a Strong Secret

8

OPRF protocol

k pwd

s=Fk(pwd)Nothing

OPRFK

US

Simple, Intuitive and …

◼ Assume a setting where given a value s’, one can check that s=s’

 E.g., use s’ to decrypt a ciphertext encrypted with the user’s key s

◼ Attacker impersonates S with fake OPRF key k*, creates dictionary

D={FK*(pwd): pwd ∈ PwdDict} and for each s’ in D, it checks if s=s’

◼ Countermeasures (depending on application):

 “Verifiable OPRF“ : can verify the output from the server via a PK

 Server stores user-related state (e.g., OPAQUE, PPSS);

 The application does not allow to verify values for s (e.g., SPHINX)

 Use a threshold OPRF (more later)

9

Insecure

OPRF application to aPAKE

◼ aPAKE: Asymmetric Password Authenticated Key Exchange

◼ Password protocol between a client and server; generates a key to

protect communication between C and S

 Common implementation: Password-over-TLS

◼ aPAKE is a stronger notion: no PKI (except for registration),

no exposure of password outside the client machine (incl. to S)

◼ Only allowed attacks are unavoidable ones

 Online password guessing and offline dict attack upon server compromise

◼ Note: “Strong aPAKE” (offline attack cannot be pre-computed)

10

◼ User U logs to server S with password pwd: Runs OPRF with S to
“exchange” pwd for the OPRF output rwd = OPRFK(pwd)

◼ rwd is a strong key for anyone that does not know pwd (incl. S)

◼ U uses rwd as a private key in a key exchange (KE) protocol with S

OPRF Application to aPAKE

11

[FK’00, Boyen’09,

JKKX’16, JKX’18]
OPRF protocol

k pwd

rwd=Fk(pwd)Nothing

OPRFK

US

OPAQUE

◼ Let KE be a PK-based Authenticated Key Exchange protocol

◼ Registration (of user U at server S):

 S chooses fresh OPRF key k and a pair (privS, pubS) for protocol KE;

 U runs OPRF with S on input pwd to learn rwd=Fk(pwd);

it generates KE keys (privU, pubU) and sets EnvU = AuthEncrwd(privU, pubS)

 S stores (privS, pubU), OPRF key k and EnvU

◼ Login:

 U runs FK(pwd) with S to learn rwd; receives and decrypts EnvU ;

 U and S run KE with keys (privU, pubU, privS, pubS)

12

[JKX’18]

OPRF + AuthEnc + AKE → Strong aPAKE

▪ Idea is simple but subtleties abound

▪ KE must satisfy perfect forward secrecy and security against

“reverse impersonation” (KCI security)

▪ AuthEnc must have a “key committing” property

▪ OPRF needs to be collision resistant and secure against

adversarially-chosen keys

▪ Proven UC (strong) aPAKE in RO: non-trivial (minefield!)

13

OPAQUE compiler

OPAQUE with DH-OPRF

◼ C has 𝑝𝑤𝑑; S has OPRF key k and private key privS ;

S stores EnvU = AuthEncrwd(privU, pubS) where rwd=H’(pwd, H(pwd)k)

 C sends 𝑎 = (𝐻(𝑝𝑤𝑑))𝑟 , 𝑔𝑥 (random 𝑟, 𝑥)

 S replies with 𝑏 = 𝑎𝑘, EnvU , 𝑔
𝑦, AuthKES (𝑔𝑦) (random 𝑦)

 C sets 𝑟𝑤𝑑 = 𝐻′(𝑝𝑤𝑑, 𝑏1/𝑟) , decrypts-verifies EnvU , sends AuthKEC (𝑔𝑥)

◼ AuthKES (𝑔𝑦) , AuthKEC (𝑔𝑥) and a session key are computed by C and S

according to protocol KE and their corresponding private/public keys

◼ Example: With KE=HMQV, the session key computation for both C and S

is little more than one exponentiation (1.17)

◼ OPAQUE well suited for TLS 1.3 (with KE = SIGMA)

14

Summary: OPAQUE Protocol

◼ Modular/flexible: Can compose with any AKE with KCI and PFS

◼ Efficient instantiations (e.g., HMQV, 3DH, SIGMA, TLS 1.3)

◼ Standardization: CFRG and TLS working groups

◼ Security: Strong aPAKE in the UC model (under ROM/Gap-OneMoreDH)

 Only unavoidable attacks: online guessing and exhaustive offline dictionary

attacks upon server compromise (no PKI! , pwd never exposed outside client)

◼ Extensions:

 Credential/secret retrieval

 Multi-server implementation via threshold OPRF (no change on client side)

15

PPSS: Password Protected Secret Sharing

(password-protected distributed storage)

16

How to store a secret

◼ We want to protect secrecy and availability of information while

remembering a single password

 Single server = Single point of compromise for secrecy (offline dict attacks)

 Single server = Single point of failure for availability (server gone, secret gone)

➔Multi-server solution a must.

◼ Crypto solution: keep the secret encrypted in multiple locations;

secret share the encryption key in multiple servers

 Share among n servers, retrieve from t+1 servers (e.g. n=5, t=2)

◼ Protects availability and secrecy: available as long as t+1 available,

secret as long as no more than t corrupted
17

(and not lose it)

Wait, but how do you authenticate to each
server for share retrieval?

◼ Server needs to authenticate the user before delivering a share

◼ All we have is a user and a password

 A strong independent password with each server? Not realistic

 Same (or slight-variant) password for each server? Not good

➔ Each server as a single point of compromise!

 From one point of compromise to n. We haven’t achieved much, have we?

18

How to protect a secret with a password

◼ What we want: “(n,t)-Password-Protected Secret Sharing (PPSS)”

 n servers, t+1 reconstruct the secret, breaking into t servers is useless (even

if all t servers’ memory leaks: shares, long-term keys, password file, etc.)

 Only adversary option: Guess the password, try it in an online attack.

◼ We show a solution based on (n,t)-Threshold OPRF : Instead of

one server storing an OPRF key K,

1. n servers, each stores a share ki of K so that any t+1 can compute the OPRF

2. but no collusion of t malicious servers can learn anything about K or the

input/output of the function on any value

3. K is never reconstructed, shares used to compute OPRF, not to compute K

19

PPSS Solution = Threshold OPRF

◼ n servers share a T-OPRF Fk(x)

◼ U’s secret defined as s=Fk(pwd)

◼ To retrieve s, U runs T-OPRF with any t+1 servers

◼ More precisely (crucial detail):

 U’s secret defined as s’=H1(s)

 In addition to ki , servers store c= H2(s), which they send to U together with

OPRF response; if not t+1 servers send c=H(s,2), U aborts

◼ Security bonus: Even if t+1 servers compromised, a full exhaustive

offline attack still needed to find password!

20

Threshold DH-OPRF (n-out-of-n)

◼ Single server solution: 𝐹𝑘(𝑥) = (𝐻(𝑥))𝑘 (H’ omitted for simplicity)

◼ Multi-server solution: Server 𝑆𝑖 has share 𝑘𝑖, 𝑘 = 𝑘1 + 𝑘2 +⋯+ 𝑘𝑛

 𝐹𝑘(𝑥) = 𝐻 𝑥
𝑘1 ∙ 𝐻 𝑥

𝑘2 ∙ ⋯ ∙ 𝐻 𝑥
𝑘𝑛 = 𝐻 𝑥

σ 𝑘𝑖

◼ To compute 𝐹𝑘 𝑥 obliviously, U sends same 𝑎 = (𝐻(𝑥))𝑟

to each server; 𝑆i returns 𝑏𝑖 = a𝑘𝑖; U sets 𝐹𝑘(𝑥) = (ς𝑏𝑖)1/𝑟

◼ Efficiency: 2 exp’s for client (indep of n), 1 per server, 1 round

◼ Key 𝑘 is never reconstructed: “function sharing” vs “secret sharing”

21

Threshold DH-OPRF (t-out-of-n)

◼ t-out-of-n threshold DH-OPRF: Each server 𝑆𝑖 has share 𝑘𝑖

◼ 𝐹𝑘(𝑥) computed from any set of t servers 𝑆𝑖1,…, 𝑆𝑖𝑡

 𝐹𝑘(𝑥) = (𝐻 𝑥)𝜆𝑖1𝑘𝑖1 ∙ (𝐻 𝑥)𝜆𝑖2𝑘𝑖2 ∙ ⋯ ∙ (𝐻 𝑥)𝜆𝑖𝑡𝑘𝑖𝑡

 𝜆𝑖𝑗 is a Lagrange interpolation coefficient (“Shamir in the exponent”)

◼ As before: key 𝑘 is never reconstructed

 Not even during generation/sharing: Distributed key generation

◼ Note: share recovery and proactive share refreshing

22

PPSS Efficiency (same as Threshold OPRF)

◼ Computation:

 Single exponentiation for each server

 Only two exponentiations in total for the client (independent of t and n)

◼ Communication: Single parallel message from user to t+1 servers,

one msg back from each server. No inter-server communication.

◼ No assumed PKI or secure channels (other than for initialization)

◼ Any t, n (t ≤ n)

◼ Robustness/Verifiability: V-OPRF (e.g via NIZK or interactive verif.)

23

SPHINX: Magic Password Manager

◼ What if we could remember really strong independent

passwords, securely?

◼ We would have solved online and offline dictionary attacks!

◼ But what about breaking the password manager itself?

24

Password Manager

◼ OPAQUE and PPSS do not solve the “entropy problem”

◼ Password manager: Stores passwords for user (browsers, lastpass, etc)

 If it uses random passwords, online and offline attacks are resolved

 A list of all user’s passwords encrypted under a master password

→ Can run offline dictionary attack given the user’s encrypted list

◼ Wanted: Attacker with full control of the manager and storage:

 Learns nothing about stored passwords (even during password registration)

 Even with full control of the manager, a dictionary attack on master

password requires an online attack per guess

25

26

Kd

mpw

a = (H(mpw))r

b = aKd

rwdS = H’(acctS,b1/r)

pake(rwdS)

1

3

5

2

4

• rwd is ~random hence secure against online guessing and offline attacks on server

• mpw and rwdS independent of device storage (Kd): secure upon device compromise
(even in this case, an mpw dictionary attack needs online verification with server)

• master mpw is perfectly hidden on the wire and from device: secure against
network attackers and fully malicious device

r
(onetime)

rwdS = H’(acctS,H(mpw)K)d

State(rwdS)

SPHINX Security

◼ Network attacks: Unconditional security device-client communication

◼ Online dictionary attacks: Infeasible (random and independent rwd’s)

◼ Offline dictionary attacks: Infeasible (random rwd)

 Offline against master pwd ONLY if server AND device compromised

◼ Device compromise: Unconditional secure pwd/rwd (online-only attack)

◼ Password leakage: Partial defense (rwd useless in another server,

master pwd useless w/o device, url hashing prevents phishing)

27

SPHINX: A password Store that Perfectly Hides from Itself, No Xaggeration

Final Remarks

Passwords, can't live with them, can't live without them

◼ If you are one of those that believe passwords are about to

disappear, this work is not for you

 I was in that camp 25 years ago... life taught me I was wrong

 Deployment, convenience, portability , familiarity, inertia, …

◼ Hardware-based solutions need to be pursued, but password

security cannot be disregarded, it still fuels most of our security

◼ Goal: Password visibility at client machine as the only vulnerability

 OPAQUE with T-OPRF addresses offline attacks upon server compromise

 OPAQUE (or any aPAKE) with SPHINX manager eliminates online and offline

attacks too (leaves client machine as only attack target!)

28

Thanks!

29

◼ OPAQUE ia.cr/2018/163

◼ OPAQUE Internet draft

https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-opaque

◼ PPSS ia.cr/2017/363

◼ SPHINX ia.cr/2018/695

◼ 2-factor authentication eprint 2018/033 (not presented)

